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CHAPTER 1

INTRODUCTION

1.1 Chaotic Systemsand the Correlation Dimension

In the past, the vast majority of systemstheory work hasconcentratedon linear

systems. However, in recent years the chaotic system model hasbeen found appro-

priate for severalphysical systemsof interest. The chaotic systemis a particular type

of nonlinear systemwhich showsanextreme sensitivity to its initial conditions. This

characteristic implies that long term prediction of chaotic systemsis impossible, but

there are other reasonsfor our interest in thesemodels. One attribute of particular

interest in time seriesanalysisis that chaotic time sequencesoften appear random.

With regardsto linearsystems,anycomponentwhichcannot bepredicted in time

sequencesin the past hasbeenattributed to "random noise", which may be a generic

term for that which cannot be modelled with sufficient accuracy. In many casesit

would be very beneficial to distinguish betweenthat which is truly random and that

which results from chaos,often to know simply what the order of an appropriate

model is: high order if true randomnessis involved, low order if the systemis chaotic.

Recentwork has shownthat this can be doneusing a measurecalled the correlation

dimension.

Dissipative dynamical systemsare characterizedby an attractor in phasespace

which shrinks to zero in volume as time passes. For dissipative chaotic systems,

this attractor is also characterizedby having fractional dimension. The correlation

dimension is a generalizeddimensionmeasurewhich describesthe geometric shape

of the system's attractor, weighted according to the frequency of visitation of the

system'sstate to eachportion of the attractor.



1.2 Review of Previous Work in Correlation Dimension Estimation

Chaos theory itself was founded with the pioneering work of Lorenz [1], who noted

from atmospheric simulations that his nonlinear models were extremely sensitive to

perturbations in their initial states. Lorenz termed this phenomenon "deterministic

nonperiodic flow" to emphasize the lack of any randomness or periodicity in the

system.

The estimation of attractor dimension was relatively undeveloped until work in

the early 1980s [2] began to focus on the dimension of the attractor of chaotic systems

as a physically meaningful attribute. Also, the work of Packard et al. [3] showed that

it is possible to derive the geometry of attractors from a single time series using time

delay embedding, which is important since vectors are rarely available.

Much work in estimation of the dimension of chaotic attractors ensued, the most

notable being the works of Grassberger and Procaccia [4, 5] and Farmer et al. [6].

Researchers began to recognize that the strictly geometric dimension of an attractor

is not physically as significant as are measures which expose the dynamics on the

attractor as well as the geometry. In this latter category is the correlation dimension,

introduced by Grassberger and Procaccia [4, 5]. This measure has the advantages

that it is easy to understand, easy to calculate, and contains information about both

the attractor geometry and the system's dynamics on the attractor.

These developments made it possible to derive a physically meaningful invariant

of a system directly from a single time sequence by finding the slope of a log- log

plot of the correlation integral. The question of what embedding dimension to use

with the time delay embedding procedure was answered formally by application of

the Takens Embedding Theorem [7]. Takens developed an optimal estimator for the

correlation dimension [8]. A criterion for the choice of time delay using the mutual

information function was introduced by Fraser and Swinney [9].

Later, the extensive works of Theiler [10, 11, 12] exposed many of the pitfalls

and gave some suggestions for overcoming problems with noise, autocorrelation in



data, lacunarity, and suggesteda new method for the Takens' estimator calculated

directly from the correlation integral. More recently, chaotic theory and correlation

dimension estimation have been adopted and applied in the realm of signal processing,

in applications such as speech and radar [13, 14, 15, 16, 17, 18].

However, many details are still left to be determined. In particular, it is well

known [11] that only a certain region of the correlation integral can be used for

estimation of the correlation dimension, but there are as yet no firm guidelines for

choosing that region. Further, theoretically the line fitting to the log - log plot of the

correlation integral has been argued to be unjustified [11].

Empirical evidence about the accuracy and discriminatory power of dimension

estimation has been mixed. On the one hand, it has been shown very effective in

discriminating between chaos and noise, while on the other hand many researchers

have questioned the validity of terming the estimates actual "dimensions".

1.3 Contribution of This Work

Two contributions are presented here: First the problem of estimating the cor-

relation dimension from the correlation integral is attacked. As previously noted, un-

weighted least squares has been criticized for not being theoretically justified. Mean-

while, the optimal estimator of Takens does not show significantly better results,

though it does provide a meaningful estimate of its error along with the dimension

estimate. Results using the weighted least squares methods do not generally seem

more promising either, in addition to the problems in choosing "appropriate" weights.

Here a new method is proposed for calculating the correlation dimension from

the correlation integral. The new method differs from least squares in the error

criterion chosen: since there is much statistical dependence between the points of

the correlation integral, the error criterion is based on the error in the increments of

the correlation integral. Further, a measure based on the increments tends to not be

influenced when the correlation integral becomes flat, so there is no need to specify a

point at which to stop on the correlation integral.



Second,as an application, the correlation dimension is used in the discrimina-

tion between radar returns from weather and ground clutter [19]. This application

is directed towards an ongoing effort to detect low altitude windshear in the near

terminal area of airports, as described by Fujita [20], Bracalente et al. [21], and Baxa

[22]. This presents a plethora of problems for conventional signal processing, and

since weather has been claimed by Lorenz to be a low dimensional chaotic system

[1], this low dimension should be reflected in the correlation dimension of the radar

return.

1.4 Organization of the Thesis

The study of correlation dimension estimation begins with a discussion of dynam-

ical systems theory in Chapter 2, followed by an introduction to chaotic dynamical

systems.

The notion of fractional dimensions is introduced in Chapter 3. Several dimen-

sions are considered, starting with the purely geometrical Hausdorff dimension and

continuing to the more information theoretic correlation dimension. The correlation

dimension is then defined more formally in terms of the correlation integral. Chapter

3 continues with some practical considerations in estimating the correlation integral

and the correlation dimension and concludes with a conjecture on the appropriateness

of the mutual information criterion in the choice of time delay.

Chapter 4 begins with a more detailed discussion of the problems associated with

deriving the correlation dimension from the correlation integral. Then a new error

criterion for the linear curve fitting is introduced. This error criterion is shown to

be more justified statistically than the criterion used with least squares. The new

method is also shown to be more easy to apply, since it saturates beyond the linear

region of the log- log correlation integral plot. Results using the new method are

then compared with those using least squares for several simulated attractors for

which the true correlation dimension is known. The new method is shown to give

very accurate and consistent predictions of the correlation dimension.

4



In Chapter 5, the correlation dimension is shown to be effective in several ex-

amples of discriminating between actual radar returns from weather and from the

ground. The approach is to analyze radar returns which are known to result from

weather and others which result from the ground. Several spatially overlapping scans

are used and the results averaged to reduce errors in the estimates, since the return

sequences are very short.

Conclusions and suggestions for further work are presented in Chapter 6. The

overall effectiveness of the new technique for calculating the correlation dimension is

discussed, as well as the promise of the correlation dimension applied to discrimination

between different radar reflectors.



CHAPTER 2

DYNAMICAL SYSTEMS: MATHEMATICAL AND GEOMETRICAL

CONCEPTS

2.1 Theory of Dynamical Systems

2.1.1 Mathematical Model of a Dynamical System

Chaotic systemsbeing a special classof dynamical systems,the discussionwill

beginwith anexplanationof sometermsand conceptsfrom dynamical systemstheory.

Basicto a dynamical systemis the conceptof the orderof the system, n, which counts

the number of active degrees of freedom of the system. This can also be viewed as the

dimension of the phase space of the system, or the number of independent quantities

required to uniquely specify the state of the system at any given time. Phase space

is then the n dimensional hyperspace _" in which the system's state vector moves.

Each point in this hyperspace describes a particular state of the system.

The state of the system, x(t), is represented by an n dimensional real vector

which gives a complete, unique, description of the system at time t. The state evolves

with time according to the dynamics of the particular system. The dynamics are

described by the function ¢ : _" ---* _'*, where ¢ is a C a (continuous with continuous

first derivative) function or mapping [23] with the properties:

Co(x) = x

= ¢(x)

¢,,+,2(x) = ¢,1(¢,2(x)).

The preceding discussion applies also to discrete time systems, and since time

sequences are more often the concern than continuous time signals, it is worthwhile

to consider the discrete time equivalents. The state of a system is now discretized



in time, being denotedby x[k], where k is the discrete time variable, or time index.

The dynamics are given by the function f : _R'_ --_ _R", where f is a Cq function often

referred to as the return map:

x[k + 1] = f{x[k]}.

In the discrete time case, the time evolution can be given as a map iterated from the

initial state x[0]: x[1] = f{x[0]}, x[2] = f{x[1]} = f2{x[0]}, .... The trajectory of

the system is then the sequence of points in phase space (_'_) given by x[0], x[1], x[2],

The observed output of a dynamical system is some function of the system's

state. It may be one component of the state or a combination of several components,

but it is practically always of lower dimension than the state itself; in fact, it is mo_t

often a scalar sequence. (Note that observations of topological dimension higher than

the order of the system must contain redundant information.) Mathematically, the

observation function is then a projection from the n dimensional phase space into a

lower dimension, i.e., the output y(t) is related to the state x(t) by

y(t) = g(x(t)),

where the function g(.) is a mapping from n dimensional space to an m dimensional

space, with n >_ m, g : _'_ _ _R"_. (For the case in which the observation is a scalar

sequence, m = 1.)

2.1.2 The Attractor of a Dynamical System

A trajectory is the sequence of points x[0], x[1], ... for a discrete time system, or

the continuous evolution x(t), t > 0 for a continuous time system. The trajectory

has two components: a transient part, which the state vector follows initially, and a

steady state part, to which the system's trajectory eventually settles.

After a sufficiently long time ("sufficiently long" being determined in general by

the system's dynamics), the system state traces out what is termed an attractor in

7



_. For systems which have multiple attractors, the specific attractor a system follows

is determined by the system's initial state. In particular, the initial condition will

be in the basin of attraction of the attractor to which the system settles. Formally,

Devaney [24] defines an attractor as "... an invariant set to which all nearby orbits

[trajectories] converge."

The Lyapunov exponents [25] describe the average rates of contraction and ex-

pansion with time of the trajectory in different directions in phase space. Specifically,

the expansion in direction i is proportional to cA't, where Ai is the i th Lyapunov expo-

nent; obviously, this entails expansion for A_ > 0 and contraction for A_ < 0. Further,

the sum of the Lyapunov exponents determines the overall expansion or contraction

of a reference chunk of phase space. For dissipative dynamical systems, the Lyapunov

exponents axe all negative, implying that a reference volume in phase space contracts

in each direction as time passes. Thus the volume of the part of the attractor also

shrinks with time.

2.2 Chaotic Dynamical Systems

It has been found that there exists a class of nonlinear systems whose responses

are such that they amplify differences in initial conditions, rather than forgetting the

initial state. This phenomenon was first recorded by Lorenz in 1963 [1], and has

since been termed "chaos". There is particular interest in these systems in part due

to the fact that sequences associated with chaotic systems appear noiselike though

the systems which generate them are completely deterministic. A great deal of effort

is being expended in finding measures which would distinguish between chaos and

noise, and that is a primary focus of this work.

Chaotic systems exhibit several interesting features, but it is the sensitive de-

pendence on initial conditions which distinguishes chaotic and nonchaotic systems

[23]. This means that even if the dynamics of the system are known perfectly, with

the limited precision available in our world, the initial conditions cannot be specified



preciselyenough that the stateof the system can be predicted in the long term. This

isin contrast to traditionalsystems theory,in which unpredictabilityisattributed to

the presence of "random noise" in the system. In chaotic systems, on the other hand,

the unpredictabilityisa directresultof the extreme sensitivityto initialconditions.

For initialconditions which are within a given attractor'sbasin of attraction,a

dissipativelineardynamical system tends to forgetitsinitialstate as time passes,all

initialconditionswithin the given basin of attractionconverging to the same attractor;

the steady state response then is a function of the system's dynamics alone. By

contrast,a chaotic dynamical system tends to amplify differencesin initialconditions

as time passes;imperceptible differencesin the initialconditions grow exponentially

as time passes and the differencein the initialconditions becomes distinguishable

[23].The chaotic system can thus be considered an information source [25].

2.2.1 Nature of Chaotic Attractors

The sensitivity to initial conditions is related to the Lyapunov exponents of the

system. A chaotic system possesses at least one Lyapunov exponent which is positive.

(However, the sum of the Lyapunov exponents may be negative, so that the system

is nevertheless dissipative.) This means that there is a stretching with time in phase

space in at least one direction. As discussed earlier, a dissipative dynamical system

(whose Lyapunov exponents are all negative) is characterized by an attractor volume

in phase space which shrinks to zero as time evolves. In this case, the attractor

becomes a fixed point. By contrast, the attractor of a chaotic system contracts in

some directions (those directions corresponding to negative Lyapunov exponents) as

it expands in other directions (those directions corresponding to positive Lyapunov

exponents), such that the volume tends to zero, but the attractor is not a fixed point

[11].

Such an attractor has a dimension which is noninteger and has been termed a

strange attractor [6, 4, 5]. (Devaney [24] points out that the term "strange attractor"

9



is not appropriate since most of these attractors have been analyzed; he argues that

"hyperbolic attractor" is more appropriate. To be precise, conservative dynamical

systems may exhibit chaos, but only dissipative dynamical systems have strange at-

tractors [11].) Further, this is not the only definition of a strange attractor; Eckmann

and Ruelle [23] define a strange attractor as an attractor with sensitive dependence

on initial conditions: "... the notion of strangeness refers thus to the dynamics on

the attractor, and not just to its geometry ...".

The idea of a fractional dimension requires a precise mathematical definition of

dimension. The most common concept of dimension corresponds to what is precisely

termed the topological dimension, and is indeed integer. Geometrically, this dimension

corresponds to the smallest number of components in a vector which uniquely defines

a point in the space. For example, the dimension of a line is obviously one, since only

a single component is required to uniquely describe a point on the line. Further, the

dimension is exactly one since a line perfectly fills the one dimension. Thus is also

the case of a disc, which has dimension exactly two. However, this dimension may

not be sufficient to accurately describe the shape of more complicated geometries, in

particular the attractors of dissipative chaotic systems.

Some objects do not entirely fill the space in which they reside. In other words,

though it may require 3 components to uniquely describe a point on a given surface,

the surface does not fully explore 3-space, but is confined to some well defined subset

of the space. In this case the topological dimension is three, but the Hausdorff

dimension is noninteger and less than three. This more mathematical definition of

dimension is best explained by a famous example.

The Koch curve (see Figure 2.1) is a simple example which shows the meaning of

"fractional dimension". This curve is generated by first starting with a line segment

1
of unit length. The middle _ segment is replaced by two segments in a sort of "tent"

4 with the same starting and endingshape, each of length _, giving a curve of length

10
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Figure 2.1 Koch curve as an example of a curve with fractional dimension. The

first three steps in the construction of the Koch curve are shown. This process is

repeated ad infinitum to generate the ideal Koch curve. The Hausdorff dimension
k.4 = 1.2619.for this curve is W5
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points as the first curve. This is repeated until, at th n th step, each linear segment

of the curve is replaced by four segments, each of length (_)_

While this curve is obviously not one dimensional, neither does it appear two

dimensional. In this case, one must resort to a more formal definition of dimension.

The Hausdorff dimension of a general curve is figured in the following way: If D is

the dimension of an object, then each time the scale of measurement is reduced by a

factor a, coverage of the object requires a D times as many unit measurement objects.

Since at each step in the construction of the Koch curve the scale is reduced by a

factor of a = 3 and the number of objects for coverage increases by 4, the Hausdorff

dimension is D = _h_4n= 1.2619. Objects with noninteger Hausdorff dimension have

come to be generically termed "fractals" [26, 27].

The Hausdorff dimension can be used as a geometrical measure of how "strange"

an attractor is, and has been used by various researchers to describe attractors. How-

ever, more recently some researchers have noted that a strictly geometrical measure of

the attractor dimension may, on the one hand, not be the most appropriate measure

and, on the other hand, is generally very difficult to calculate in practice [23, 4].

It has been suggested that a more appropriate measure of strangeness of attrac-

tors is one which takes into account not only the geometrical shape of the attractor,

but also the frequency of visitation of the state to various portions of the attractor

[4, 6]. One such measure is the correlation dimension, to be discussed in the following

chapter.

2.2.2 Examples of Chaotic Systems

Several examples of chaotic systems have been discussed and explored in detail,

both empirically and theoretically. These provide important frames of reference for

discussion since they are so well understood.

A very trivial example of a chaotic system is the discrete time logistic equation,

given by the following formula:

x[k + 1] = px[k](1 - x[k]). (2.1)

12



For parametervaluesof 0 </_ _< 4 and initial condition 0 < x[0] < 1 this system maps

the unit interval into itself; for particular values of/_, the sequence z[k] is chaotic.

Figure 2.2 shows a typical sequence with/_ = 3.5699456 (just at the onset of chaos)

[5] and initial condition x[0] = 0.6791. The Hausdorff dimension of the attractor in

this case is known to be 0.538 [5].

A second example, this one presented by Lorenz [1] for modelling convective fluid

flow, is given in continuous time by the set of nonlinear, coupled differential equations

it = -zz + rx- y

k = xy-bz,

(2.2)

where a, r, and b are constants and the dot denotes differentiation with respect to

time. For particular values of these parameters the system exhibits chaotic behavior.

Figure 2.3 shows a three dimensional plot of the attractor of the Lorenz system for

values of a = 10.0, r = 28.0, and b = s5, a set of parameter values which is known to

result in chaotic behavior [5]. (The simulation was performed using the fourth order

Runge--Kutta numerical integration method with time step 0.002. The first 2000

points were discarded to ensure that the trajectory had settled onto the attractor.)

Figure 2.3 shows the three dimensional picture of 2000 points of a typical Lorenz

attractor. This attractor is known to have Hausdorff dimension 2.06 + 0.01 [5].

A third system, known as the RSssler system, is given by the following set of

differential equations:

:_ ---- --Z -- y,

_l = z+ay,

k = b-cz+zx,

(2.3)

which exhibits chaotic behavior for parameter values a = 0.15, b = 0.20, and c = 10.0.

An attractor for this system is shown in Figure 2.4.

13
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Figure 2.2 Sample attractor for the lvgistic equation with p = 3.5699456 and

initial condition x[0] = 0.6791.
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Figure 2.3 Sample Lorenz attractor simulated using fourth order Runge--Kutta
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Figure 2.4 Sample RSssler attractor with parameter values a = 0.15, b = 0.20, and

c = 10.0.
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CHAPTER 3

THE CORRELATION DIMENSION

This chapter begins a study of the characterization of an attractor based on its

dimension, the types of dimension that may be used, and the physical significance of

these dimensions. Geometrical, mathematical, and dynamical concepts will be used

as aids in the development as necessary. Attention is focussed on the correlation

dimension, since this dimension has been found to be simpler to calculate from a

time sequence and more physically meaningful in most cases.

3.1 Measures of Dimension

The purpose of the work here is to eventually gain some knowledge about a

system based on a time sequence which is output from the system. The question

is: What shall we use as a descriptor of the system? The descriptor should be an

invaxiant measure of the system, i.e., a measure which is independent of the specific

orbit of the trajectory (or, equivalently, independent of the specific initial condition)

[25], or invariant with time [12]. One such invaxiant, the one which will be considered

here, is the dimension of the system's attractor. However, there axe several choices for

the dimension to be calculated. Below several measures of dimension will be defined

and problems associated with either the measure or with its practical calculation will

be discussed. As a practical matter, one would like a measure of an attractor which is

both reasonable in computational complexity and as descriptive of both the attractor

structure and the dynamics on the attractor as possible.

The idea that the Hausdorff dimension, D, of a chaotic attractor is noninteger was

discussed in the previous chapter. In the past, this has been a popular feature used

to characterize systems, but recently it has been realized that there are some flaws in

its use. First, as noted in Chapter 2, it is a strictly geometric measure, simply finding



the spatial dimensionoccupiedby the attractor. This givesno emphasisto portions

of the attractor which arevisited moreoften [23,4]. From a dynamical systemspoint

of view, this is important, sinceinformation is conveyedby the probability of finding

the state in a given region, aswell as by the geometricstructure of the attractor.

Second,the Hausdorff dimension has been found to very difficult to calculate

whenever the dimension is greater than 2. Further, the most popular method of

finding the Hausdorff dimensionis using box counting. This method hasbeenfound

to be both very computational, sinceall calculationsmust be repeatedevery time the

scaleis changed,and very slow to converge,often requiring on the order of l0 s points

[23, 4]. The convergence problem is perhaps the most critical, since the number of

points available is typically at least an order of magnitude less.

A second dimension is the information dimension, though there is no single ac-

cepted definition of this measure. The concept of information dimension results from

viewing the system as a generator of information [6]. The exponential divergence of

trajectories (determined by the positive Lyapunov exponents) means that informa-

tion is created as each succeeding point on the attractor is known, since specification

of each successive point more accurately specifies the initial condition. According

to Farmer et al. [6], "The information dimension is a generalization of the capacity

that takes into account the relative probability of the cubes used to cover the set."

Generally, the information dimension is taken as meaning something like the num-

ber of bits needed to specify a point on the attractor to a given accuracy [6]. (Here

in particular there is no standard definition; Eckmann and Ruelle [23] refer to the

correlation dimension which follows as "information dimension".)

Another measure has been introduced which not only is easier to calculate, but

also approximates (more precisely, lower bounds_ but the bounds are usually very

tight [5]) both the Hausdorff and information dimensions [5]. Further, this measure

has been argued to be more physically meaningful than the Hausdorff dimension itself

[4]. This measure is the correlation dimension, as discussed in the following section.
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3.2 The Correlation Integral and Correlation Dimension

3.2.1 Definition of Correlation Integral

The correlation dimensionis defined as a parameter of the correlation integral.

The correlation integral is simply a type of empirical distribution function based

on pairwise distances between pairs of vectors, calculated as follows: Given a time

sequence of vectors {x[k]}_=_ 1, the distances between all pairs of vectors are calculated

(using either Euclidean or maximum distance measures). The correlation integral

itself, C(r), is calculated as a function of distance r as

2 N i-1
C(r) = lim _ _ O(r -[xi- xj[),i _ j, (3.1)

N--._ N(N - 1) i=1 j=l

where O(.) is the Heaviside step function,

O(a)={ 0, a<01, a>0

3.2.2 Shape of Correlation Integral

This shows that C(r) simply represents the fraction of vectors which lie within

a distance r of one another. A few simple examples are considered to demonstrate

the physical meaning of the correlation integral: first, a line containing points equally

spaced from 1 to 1000. If this is an attractor embedded in, for example, three dimen-

sional space, then the attractor has diameter 999 _ (using the Euclidean distance

measure). Up to that diameter, the correlation integral scales linearly with r, i.e.,

C(r) o( r. Figure 3.1 shows the correlation integral, while Figure 3.2 shows the

correlation dimension, which is indeed calculated to be nearly one. Similarly, if the

attractor fills two dimensional space and the points are equally spaced, it would be

found that, up to the diameter of the attractor, C(r) (x r 2, giving a correlation di-

mension of 2. Note in these examples that the correlation dimension is the exponent

of u. Further, note that while any line would have a Hausdorff dimension of 1, the

points must be equally spaced on the line for the correlation dimension to also be 1,
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since the correlation dimension compensates for the relative frequency of occurrence

of points on the line.

This is true for attractors with fractal structure also; for small values of r the

correlation integral has a power law dependence on the range r:

C(r) oc r", (3.2)

but the exponent u may be noninteger. The parameter u, referred to as the correlation

dimension, can be found as the slope of the plot of log[C(r)] versus log[r] for small

values of r. Mathematically,

v = lim log[C(r)]
_--.0 log[r] (3.3)

3.3 Reconstruction of System Dynamics from a Time Series

The overall goal is to derive some estimate of the dimension of the attractor for

a chaotic system. In general, all that is available is a single time sequence, which is

the result of measurement of some component or components of the system, and the

system must be analyzed based solely on this sequence. However, if techniques such

as correlation dimension analysis are to be applied to the system, a sequence of state

vectors is required. As stated by Packard et al. [3], in geometric terms the problem

is to reconstruct phase space from the observation of a single coordinate. Essentially,

one is trying to guess both the dimensionality n of the attractor and the topology of

the phase space [3]. In this section one method of deriving the required n independent

quantities from a time series is explored.

3.3.1 The Number of Independent Measurements Required

For a system of topological dimension n, it is well known that unique specification

of the state of the system requires at least n independent quantities. This is logical,

since the topological dimension is the topological dimension of the phase space, and

the number of components required to uniquely specify a point in space is equal to the

topological dimension of the space [3]. The state of the system is just a particular point
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in phasespaceat a given time. While a system may be described in many ways in

terms of the physical meaning of the components of the state vector (any state vector

being diffeomorphically equivalent to any other), the common feature is that exactly

n components are needed for any state vector description. (More components simply

add redundant information; fewer components do not give a unique description.)

The key to the use of a single time series for reconstruction of dynamics is that

any n independent quantities can be used as a state vector for the system. Much work

has been concentrated on this problem in the last decade, with the basic idea that the

measurements composing the time series are independent of one another (in a sense to

be defined later) if measurements are taken which are spaced an appropriate distance

apart (with appropriate distance also to be defined later). This general method is

called the method of time delay coordinates, introduced by Packard et al. [3].

3.3.2 The Method of Time Delay Coordinates

While it may be unreasonable to expect to construct a state vector whose compo-

nents have a physical significance directly, it has been argued that any n independent

quantities from a system are sufficient to completely describe the system at any par-

ticular time. A choice for these quantities which has become popular with researchers,

particularly for its simplicity, is time delay coordinates.

The idea behind this particular method is that since the system is dynamic, the

measurements in the time sequence are changing. The vector

x[k]
x[k- T]

xik- (d- 1)T]

,,[k]= (3.4)

is formed, where the boldface x denotes a vector, the plain x denotes the scalar time

sequence, T is an integer delay, and d is an integer called the embedding dimension.

(Methods of choosing T and d will be discussed below. It is also possible to use the

same method with samples taken at times k, k + T, . .., k + (d - 1)T. This is simply
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a matter of notation.) With appropriate values of T and d, the elements of x will be

independent and will contain enough information to specify the state of the system

which generated the time sequence.

3.4 Relationship between Time Delay and Phase Space Reconstructions

3.4.1 Influence of Time Delay on Coordinates' Independence

One might surmise that the choice of T in Equation 3.4 is critical in the success

of any analysis based on time delay coordinates. Empirical evidence has shown that

the method of time delay embedding is relatively robust with respect to the choice

of T, within the limitations discussed below. In fact, even the fundamental work of

Fraser and Swinney on choosing T states that "For an infinite amount of noise free

data, the time delay T can in principle be chosen almost arbitrarily" [9]. However,

that scenario cannot be assumed in the real world, so this will be explored further.

Basic to the choice of value of T is that the components of x be independent but

not unrelated. Two questions should be posed: what are the implications if T is not

chosen properly, and what definition of independence should be used?

It is helpful to take a geometrical view in order to answer the first question. Suc-

cessive components of the time sequence are generally highly correlated in a statistical

sense; if there is no correlation, the sequence is white noise by definition. Correlation

between adjacent samples also implies correlation between samples spaced farther

apart in time; in empirical studies, determining independence involves testing when

the (auto)correlation drops below and stays below a certain threshold. The impli-

cation is that if T is chosen too small, say T = 1, the components of x are highly

correlated, so that the attractor seems to be a line in phase space. Figure 3.3 shows

the partial phase space reconstruction for the Lorenz system obtained when the time

delay is too small.

As a guideline for choice of the upper bound on T, it should be recalled that

at least one Lyapunov exponent of a chaotic system is positive. This means that
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the trajectory in phase space is exponentially diverging in at least one direction.

Thus, if T is chosen too large, the components of x will be unrelated due to the

dynamical nature of the system and the divergence of trajectories. Figure 3.4 shows

the consequences of choosing T too large; the reconstructed attractor does not show

the rich structure of a typical Lorenz attractor, but looks rather jumbled.

This discussion is useful in understanding the independence concepts involved,

but researchers have recently noted [9, 28] that this definition of independence based

on a threshold on the autocorrelat'ion only implies linear independence. This is not

appropriate in the study of chaotic systems, since these systems are inherently non-

linear. The proposal has been to use general independence [9], which is measured

in an information theoretic sense [29]. Mathematically, rather than looking at the

autocorrelation function, we look for the value of T which yields the first minimum

of the mutual information function [29, 9]

I(T) = _ P{x[k],z[k- T]} log f P{x[kl,x[k- T]}
PT ] }/ (3.5)

Arbanel [25] points out that choosing the first minimum of this function with respect

to T is the "...natural, nonlinear, information theoretic analog of choosing the first

zero of the autocorrelation function as a correlation time and useful time delay."

The mutual information between delayed versions of the x component of the

Lorenz system is shown in Figure 3.5. Noting that the first minimum occurs at

T = 17, this is chosen as the appropriate delay for the time delay embedding. Figure

3.6 shows the phase space reconstruction using the sequences x[k], z[k- 17], and

x[k - 2 * 17] for the x, y, and z components, respectively. What is important here is

not that this phase space reconstruction exactly resemble the original Lorenz attractor

(such as the example shown in Figure 2.3), but that the components be "independent"

yet not unrelated.

Equation 3.4 shows that the time delay vector x has d components. Since the

state vector should uniquely specify the state of the system, it must contain at least as
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Figure 3.4 Reconstructionof Lorenz attractor using time delay coordinates with

time delay too large, T - 77 in this case. This causes the coordinates to be

unrelated and the attractor to appear random.
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many componentsas there are degrees of freedom in the system. Therefore, naively

we can say that d must be at least as large as the topological dimension of the system's

attractor (which is the same as the number of degrees of freedom of the system). The

Takens Embedding Theorem [7] proves that phase space can be effective reconstructed

based on vectors of dimension d __ 2do_l + 1. Arbanel [25] says that this bound on

d is sufficient but not necessary. He (and others) uses the idea of orbit (trajectory)

crossings in the determination of d.

What is being described is essentially the reconstruction of a phase space using

vectors derived from one time sequence. (Emphasis is on "a" phase space, since the

state vector description of a system is not unique. As stated earlier, the state vector

descriptions are diffeomorphically equivalent, however.) It is appropriate to note here

that not all reconstructions of phase space are equally desirable. Fraser [28] comments

that "bad" reconstructions are those which are not invertible, or in which "... points

in the reconstructed phase space do not uniquely specify points in the original phase

space." However, this is more a theoretical than a practical matter, and in practice a

choice of T which gives any reasonable reconstruction is sufficient.

3.4.2 A Conjecture on the Appropriateness of Uniform'Time Delay Based on Mutual
Information

The work of Fraser and Swinney [9] was the first and most significant attempt

to put the choice of time delay for embedding on a firm theoretical footing. They

conclude that the delay which gives the first minimum of the mutual information

function is the appropriate delay for time delay embedding. However, while there

seems great theoretical justification for this choice, a couple of problems will be noted

and questions posed.

While this choice indeed leads to the first two coordinates (and indeed all pairs of

successive coordinates) being generally independent, it ignores significant dependence

between other pairs of coordinates. Figure 3.7 shows the mutual information between

delayed versions of the x component of the RSssler system of Equation 2.3. At a
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delay of T = 25 the mutual information between contiguous pairs of coordinates in

the time delay vector will be very small; however, at a delay of 2T = 50, the mutual

information will be much larger. This means that components zl, zz, zs, etc. will

be very dependent, as will be components z2, x4, etc. It seems more appropriate to

consider general independence between all the coordinates together. In this sense, a

more sensible criterion than the mutual information of Equation 3.5 is the general

relation

I(T) = E_P{x[k],x[k- T],...,:r[k -(d- 1)T]} x

log( P{_[k],_:[k-Tl,...,_[k-(d-1)T]}
_,P{_[k]}P{x[k-Tl}...P{x[k-(d" 1)Ti) / "

Implementation of such a criterion would be very impractical, since the co-

occurrence probabilities of large combinations of values would be required, particu-

laxly when the embedding dimension d is large. This poses an extreme computational

burden, as well as statistical problems, for the co-occurrences will be very sparse.

Thus, as a practical matter, the computation would be prohibitive and this will not

be pursued further here.
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CHAPTER 4

A NEW ESTIMATE FOR THE CORRELATION DIMENSION

4.1 Traditional Method Using Least Squares

The method of least squares is a common tool for fitting a curve through a finite

and known number of data points. (In the special case that the curve is linear, as

here, the term "linear regression" is often used.) The method is well known and

understood, but the development will be given here for comparison with the new

method that follows.

A set of data is available with independent variable zi and dependent variable

yi, with 1 <_ i _ N, so that there are a total of N pairs of coordinates (xl, yi). For

the linear regression case, the assumed form of the curve is y = ax -t- b, so that a and

b are parameters which are determined as follows. The error criterion chosen is that

the sum of squared errors between the curve and the data points is minimum, or that

N (4.1)
_2= ]Ety,- ("_'+ b)?

i=1

is minimized by the choice of a and b.

Minimization of Equation 4.1 is accomplished in the standard way by taking

partial derivatives with respect to a and b and setting to zero, which yields

N

°_ - _E2[y,- .x,- blt-x,l= 0
_a i=l

and
N

°_*- _:2[y,- .., - bli-xl=0.
Ob _=,

These reduce to

a

_,_, _,y,- bE,N_1_, (4.2)

and

N
1 _.,xi

b= "_ yi - a
i=1 i=1

(4.3)



Combining equations 4.2 and 4.3 gives the final result:

a "- E,_, x, _,,_=1 Y' - N _1 x'V'

- N (4.4)

(Note that the application here only involves the slope, so this will not be continued

further to find the intercept.)

4.2 A New Method

It has been noted by other researchers that individual points of the correlation

integral are not independent in a statistical sense. This is because of the nature of the

correlation integral: it is essentially an empirical distribution function. As noted by

Theiler [10], the value of C(r + e) is just C(r) plus the fraction of distances between

r and r + e. Thus the values are highly dependent. Least squares methods are not

optimal for use when the data points are not independent.

4.2.1 Error Criterion and Justification

On the other hand, the individual increments of the correlation integral are

independent. Therefore, here it is argued that a more sensible error criterion might

be

N

e2 = _{y,- _,_, - [(ax,+ b)- (ax,_, + b)]}2
i-2

or

N

e_ = E[Y' - Y,-, - a(z,- z,_,)l 2. (4.5)
i-2

Taking the derivative of Equation 4.5 with respect to a and setting to zero gives

= E_,(_, - _,_,)(y, - y,_,)
N (4.6)E,f_(x, - _,-1)_

In this application, let z = log(r) and y - logiC(r)], so that the slope a is the

correlation dimension v.
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4.2.2 AdvantagesoverOther Methods

The method for finding the correlation dimension discussed above has significant

advantages over previous methods. Unweighted least squares is not justified theo-

retically for use with data which are highly correlated. Weighted least squares can

compensate for this, but it has been found empirically that results from weighted

least squares are little if any better than those using unweighted least squares [11].

The optimal estimator developed by Takens, given by

-1
7=

(log[_l)'

while greatly justified theoretically [8], often gives results which are no better than

those using unweighted least squares [11].

In addition, all methods require that one choose a region of the log[C(r)] versus

log(r) curve over which the curve is acceptably linear. Least squares methods will

underestimate the slope if one uses points beyond the "knee" of the curve, while

statistical confidence is low if too few points are used. Also, noise effects at small

r values will lead to inflated slope estimates when using only a few points in the

calculation.

The calculation of v represented by Equation 4.6 seems more robust than these.

First, since it is based on information in the increments of the correlation integral,

there is no inherent statistical dependence between the data points. Second, the

shape of the correlation integral seems particularly suited for this method. Since the

correlation integral levels off as the range r approaches the diameter of the attractor,

the increments in the dependent variable decrease, so that the contributions to the

correlation dimension estimate in Equation 4.6 diminish to zero. This has several

implications.

The inherent decrease in weighting at large ranges which the new method pro-

vides means that when no noise is present in the data, the correlation dimension esti-

mate will saturate and there is no need to specify a stopping point on the correlation
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integral. A more formal analysisfollows: First, Equation 4.6 is repeatedexplicitly in

terms of u, but retaining z -- log[r] and y = log[C(r)], with the increments zi - zi-i

and yi - Y_-i replaced by Azi and Ayi, respectively:

Ax Ayi
V_ NEi=2 [Azi] 2 " (4.7)

Note that both Azi and AF i are nonnegative. Assume that the curve is linear up to

N1, C(r) cc r _ for 1 < i < N1, and that the curve stays below that line beyond that

point, as shown in Figure 4.1. Then the estimate for the correlation dimension, re,t,

is

_N1 AziAyi

v,,t = EN 1 [Azi]2 . (4.8)

Because C(r) oc r v, 1 < i < N1, Ayi = vAzi over this region. With the form assumed

above, Ayi < vAzi, N1 < i < N. Then Equation 4.8 becomes

p N
v,°t <_ F_,i=1AziAzi

N [A=,]2 '

which implies Ueot_<u. Therefore, ifthe log-logplotofthe correlationintegralsatisfies

the form described above, this estimator willnot overestimate the true correlation

dimension.

The fact that the contributions diminish at largerranges isbeneficialin stabiliz-

ing the estimate of v, but there is also a drawback: noise. Since the effect of noise is

to inflate the slope of the correlation integral at small ranges, the new method is not

expected to perform well in the presence of noise. The effect of noise will be to cause

the new method to seriously overestimate u at small ranges, and the estimate will

probably not recover. More will be said about this in the following section, which is

an empirical study of the preceding.

4.3 Comparison of Results: New Method Versus Least Squares

In the following, results of the correlation dimension estimation will be presented.

Each figure contains two curves plotted versus the stopping point of the correlation
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Figure 4.1 Assumed form for a typical log[C(r)] vs. log[r] curve. In this case, the

estimator given for the correlation dimension will never overestimate the slope,

regardless of what stopping point is chosen.
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integral used for the estimate. One curve in each plot is derived using the least squares

method and the other curve in each plot uses the new method. The results show that

while the least squares estimate is strongly dependent on the stopping point chosen,

the new estimate is practically unaffected by the choice.

Being based on the increments of the correlation integral, the new estimate for

u, Equation 4.7, is more sensitive at small ranges, where the increments are larger.

As the increments become smMler, the effect on the new estimate is smaller, whereas

the least squares method has no inherent provision for such weighting.

It is known that the effect of noise in sequences is to inflate the slope of the

correlation integral at small range values [11]. Thus, the new method is not expected

to perform well in the presence of noise, since the noise will tend to dominate in the

estimation of u.

Three studies are presented of simulated sequences whose correlation dimensions

are known: the logistic equation (given by Equation 2.1 with p = 3.5699456, with

a typical attractor as shown in Figure 2.2), the Lorenz system (Equations 2.2, with

parameter values a = 10.0, r = 28.0, and b = s_, and attractor shown in Figure 2.3),

and the last involving a zero mean, unit variance Ganssian noise sequence. While the

correlation dimensions of the first two examples are known, the correlation dimension

of the white noise sequence is expected to follow the embedding dimension [10].

Figure 4.2 is a plot of the correlation integral for the logistic equation, while

Figure 4.3 shows the estimated correlation dimension of the logistic equation versus

the number of points of the correlation integral used for both the least squares method

and the new method. The correct correlation dimension is known to be between 0.4926

and 0.5024 [5]. The least squares gives wildly fluctuating estimates, apparently due

to the strange shape of the correlation integral, while estimates with the new method

are very near the true value.

Figure 4.4 is a plot of the correlation integral for the Lorenz system of equations.

Figure 4.5 shows the estimated correlation dimension of the system versus the number
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of points of the correlation integral used. The correct correlation dimension for the

set of parameter values chosen is known to be 2.05 4- 0.01 [5]. In this case, the least

squares method gives an estimate which diminishes as more points are considered.

(Note that this implies little statistical confidence can be put in the estimate, since

it is only near the correct value when few points are used.) Again, the new method

gives estimates which are very near the true value and are relatively unaffected by

the stopping point.

Figure 4.6 shows the correlation integral for the Gaussian noise sequence for em-

bedding dimensions of 3, 5, and 7. As expected, the slope of each increases with

increasing embedding dimension. The calculated correlation dimensions for these

curves are shown in Figure 4.7. In each case, the estimates for both the old and new

methods are shown; the estimates begin near the same value, but the new method

shows relative insensitivity to the stopping point used, while the least squares esti-

mates decrease as the stopping point increases.

As noted earlier, the new estimator for the correlation dimension is not expected

to perform well in the presence of noise. Figure 4.8 shows a plot of the correlation

integral for the Lorenz system with zero mean, unit variance Gaussian noise added.

The time delay used is T = 17, the correct delay based on the mutual information

criterion. Embedding dimensions are 5, 7, and 9. Estimates of the correlation dimen-

sion from this correlation integral are shown in Figure 4.9 for both least squares and

the new estimator. The randomness added to the attractor is expected to increase

the correlation dimension estimates. Figure 4.9 shows that the noise effects on the

new estimator are similar to its effects on the linear regression method.
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CHAPTER 5

APPLICATION OF THE CORRELATION DIMENSION TO RADAR

REFLECTOR DISCRIMINATION

One recent effort in the radar signal processing field is that of detecting low

altitude windshear using airborne radar. This presents a multitude of problems,

which arise primarily from the instabilities associated with radar platform motion and

high return levels from ground clutter. Baxa [22] has identified the most significant

problem as that of discriminating between ground clutter and slow moving weather,

since frequency selective filters are ineffective in this case.

Lorenz showed that weather can be modelled as a chaotic system of relatively

low dimension [1]. It is proposed here that this low dimension may lend aid in

discriminating between radar returns from the weather and those from the ground.

Previously, Leung and Haykin applied a similar idea to the determination of the

correlation dimension of sea clutter [13, 17], concluding that the dimension of sea

clutter is approximately 6.5. However, this was not compared to other types of

reflectors. Two questions are to be answered: First, is the correlation dimension of

weather returns truly "small" relative to that of other reflectors? And second, can

the correlation dimension be used effectively as a discriminant between weather and

ground returns?

5.1 Radar System Scenario

The radar data were collected using an airborne radar system which scans in

azimuth at 0.5 ° increments, collecting returns in 91 range cells at each azimuthal

direction. Each return is a discrete time sequence of complex IQ data of length

96. The returns axe converted to real sequences of length 192 samples by a complex

modulation using the Discrete Fourier Transform. Since the 3 dB beamwidth of the



antenna is approximately 3 ° , there is much spatial overlap in the field of view at dif-

ferent azimuths. This overlap gives justification for using averaging of the correlation

dimension estimates over many range cells, since there is much redundancy in the

physical space covered by the data.

Airborne radar data are available from two flights: The first is a clutter only

flight over the Denver Stapleton Airport, while the second is a flight through a se-

vere thunderstorm near the Orlando International Airport. The clutter is considered

typical of ground clutter likely to be encountered near airports. Sidelobe returns are

eliminated from the data by choosing range cells far enough ahead of the airplane

that mainlobe returns dominate.

Two studies are presented here for both the weather and ground clutter returns:

in the first, range cells 20 through 24 were chosen and followed over 200 azimuthal

scans, giving a total of 1000 estimates of the correlation dimension. Afterward, some

smoothing was performed on the estimates to reduce the effects of using such short

time sequences in the correlation dimension estimation.

For the second study, range cells 30 through 36 were chosen and only the scans

within +1.5 ° of the aircraft heading were used, giving a total of 7 scans per each

complete scan in azimuth. These were followed over 21 total azimuthal scans, to give

a total of 1000 estimates of the correlation dimension. The same type of smoothing

was performed on this test.

5.2 Method of Analysis

The general technique for determining the correlation dimension of a system

from a time sequence is as follows: Vectors are formed from the time sequence using

time delay embedding, as described earlier. The correlation dimension is calculated

from these vectors, increasing the embedding dimension d until there is saturation

in the correlation dimension estimates. The value at which saturation occurs is then

the correlation dimension of the system. Theiler has pointed out [11] that in such
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discrimination problems, obtaining the ezact correlation dimension is not as important

as obtaining precise and repeatable estimates which allow discrimination.

5.3 Results of Correlation Dimension Analysis

Results of the correlation dimension calculations for the first case are shown in

Figure 5.1 for the clutter only case and Figure 5.2 for the weather only case. Figures

5.1 and 5.2 show a marked difference in the correlation dimension of the weather and

ground clutter returns. While saturation of the correlation dimension of the ground

returns occurs around 3-4.5, the weather returns show saturation in the neighborhood

of 2 - 3. The overall means for these estimates for the correlation dimensions are 2.3

for the weather and 3.5 for the ground return.

This difference is also evident in Figure 5.3, a clutter only scan, and Figure

5.4, which contains weather in the earlier scans but clear air (or ground) returns in

the later scans. (Verification of the types of targets for the second test was done

using measured reflectivities. The only high reflectivities encountered during the

high altitude flight over Orlando were from weather.) Here the overall means for the

estimates are 3.0 for the Orlando flight (the mean is shifted upward by the presence

of nonweather return in the later scans) and 3.8 for the ground return.

Figures 5.5 and 5.6 show the probability of occurrences of the correlation dimen-

sion estimates for the two studies above. It can be seen that, particularly in the first

case, the modes of the two distributions are well separated, so that discrimination

based on a threshold on the correlation dimension would be very effective. In fact, if

a threshold is set at 2.78, with correlation dimensions above the threshold considered

ground and those below weather, a detection probability of 0.93 is possible while a

false alarm rate of less that 0.10 is maintained.

For the second case, the threshold must be set at 3.70 to achieve a false alarm

less than 0.10; with this threshold, the detection probability is 0.71. However, it must

be kept in mind that the "weather" return here is also contaminated by clear air or

5O



4.5

._. 3.5

.[I 3

8
4

2.5

]2

_1.5

1

0.5

0
0

Embedding dimemionJ:
d=9 (solid ¢uvce)

d=7 (broken curve)
d-5 (dotted carve)

i t i I t I i i I

100 200 300 400 500 600 700 800 900 1000

Rmge cell umlpte number
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returns (broken curve) and weather returns (solid curve) for the first test. Using a

threshold of 2.78, it is possible to achieve a detection probability of 0.93 while

maintaining a false alarm rate less than 0.10.
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maintaining a false alarm rate less than 0.10.
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ground returns, as discussed earlier. The conclusion is that the correlation dimension

is a promising discriminant but the threshold may have to be adjusted.

It appears that there is a significant difference in the correlation dimension be-

tween the weather and ground returns, with the weather return having a relatively

small correlation dimension. Thus it seems reasonable that the correlation dimension

may be effective in discriminating the source of radar returns, when those sources may

be weather or the ground. However, much more detailed analyses will be required

before these results can be presented as general.
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CHAPTER 6

CONCLUSIONS

This work has been concerned with the estimation of the correlation dimension.

The relationship between the correlation dimension and the structure of system at-

tractors and estimation of the correlation dimension from a single time sequence have

been discussed. In this context, the practical aspects of correlation dimension es-

timation have been emphasized. Further, as an application, it was shown that the

correlation dimension can be used, at least in some cases, to distinguish between

radar return signals of differing origins.

6.1 Discussion of Results

6.1.1 New Estimate of the Correlation Dimension

The practical estimation of the correlation dimension poses many problems; these

include topics relating to the derivation of multidimensional dynamics from a single

time sequence, as well as details of calculating the correlation integral from state

vectors and calculating the correlation dimension from the correlation integral. Here

effort was focused on the last of these topics.

The requirement that only the "small" range of the correlation integral be used

in estimating the correlation dimension posed significant statistical problems. The

traditional approach has been to find the slope of a line which fits the log-log plot of

the correlation integral in a least squares sense. More recently, the Takens Estimator

was developed, which provides an optimal estimate of the correlation dimension.

However, the least squares method was shown to have theoretical problems, since the

points of the correlation integral are not statistically independent, while the Takens

Estimator does not provide significantly improved results.



As a practical matter, both the least squares and Takens Estimator require the a

priori specification of a range of the correlation integral to consider. Calculations here

demonstrated that the results obtained are strongly influenced by the range chosen.

A new estimate for the correlation dimension was developed by choosing an error

criterion for the least squares method which is: (1) more strongly affected by the

linear portion of the log-log plot of the correlation integral than by the saturation

region and (2) based on the increments in the correlation integral, eliminating the

statistical dependence between points.

This new estimate thus removes both an implementation obstacle (point 1 above)

and a theoretical obstacle (point 2 above). Results show that it provides an accurate

estimate of the correlation dimension for several weil known examples.

6.1.2 Correlation Dimension as a Radar Reflector Discriminant

Perhaps the most common method for discriminating between radar returns from

different reflectors is through the use of frequency selective filters. However, in appli-

cations such as airborne radar, in which the ground clutter cannot be simply removed

by a notch filter, another method or measure is desirable. It is for such a situation,

in which weather and clutter may occupy the same or very nearby frequency bands,

that the use of the correlation dimension has been proposed as a discriminant.

The results presented for using the correlation dimension to discriminate between

radar returns from weather and ground clutter indicate that it can be very effective for

such a task. The work of Lorenz [1] demonstrated that weather is a chaotic system of

relatively low dimension, and this is reflected in the correlation dimension estimates

for the weather radar returns. These weather returns seem to imply a correlation

dimension somewhere between 2.0 and 2.5. There seems to be little guidance for

what to expect for the dimension of ground returns, however. Empirical evidence

suggests a correlation dimension exceeding 2.5.
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6.2 Conclusions and Future Work

Work in chaotic systems is relatively new. The idiosyncrasies of chaotic modelling

would seem to render such work pointless, for the very nature of chaotic systems is

that they are unpredictable. Indeed, if prediction were the only purpose, such work

would be useless. However, in many cases it is beneficial to know simply the nature

of the physical system underlying an observed time sequence, for example, is the

sequence truly random, or is a chaotic model appropriate? In such a case, a model

may not be required, but simply an idea of the form of the model.

If this is the case, descriptors of the model are appropriate. These descriptors

should contain as much information about the system as possible and be readily

derivable from the data at hand, which is typically a single time sequence. The corre-

lation dimension fits these requirements for chaotic systems. While in this work many

relevant topics have been presented, many questions are not answered conclusively.

The time delay embedding procedure itself may contain many opportunities for in-

troduction of errors. For example, evidence and arguments presented here seem to

indicate that the choice of time delay for the time delay embedding based on mutual

information considerations should be given great consideration.

One of the main concerns here has been in deriving the correlation dimension

from the correlation integral. Even for this small detail, an ideal method has not been

found. Here a method of estimation has been proposed which seems very promising,

but is overly sensitive to noise in the data. However, insofar as precision in the

estimate is often at least as important as accuracy, the new method is a great im-

provement over existing methods.

The second concern was using the correlation dimension to distinguish between

weather radar returns and those from the ground. Some preliminary empirical ev-

idence has been presented to support the premise that weather returns are charac-

terized by low correlation dimension, while ground returns are significantly higher in
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correlation dimension. Again the results are encouraging, but problems such as corre-

lation dimension estimation from extremely short time sequences must be overcome.

61



REFERENCES

1. Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric
Sciences, 20:130-141, 1963.

2. Harold Froehling, J. p. Crutchfield, Doyne Farmer, N. H. Packard, and Rob

Shaw. On determining the dimension of chaotic flows. Physica D, 3:605-617,1981.

3. N. H. Packard, J. p. Crutchfield, J. D. Farmer, and R. S. Shaw. Geometry from
a time series. Physical Review Letters, 45(9):712-716, 1980.

4. Peter Grassberger and Itamar Procaccia. Characterization of strange attractors.
Physical Review Letters, 50(5):346-349, 1983.

5. Peter Grassberger and Itarnar Procaccia. Measuring the strangeness of strange
attractors. Physica D, 9:189-208, 1983.

6. J. Doyne Farmer, Edward Ott, and James A. Yorke. The dimension of chaotic
attractors. Physica D, 7:153-180, 1983.

7. Floris Takens. Detecting strange attractors in turbulence. Lecture Notes in
Mathematics, 898:366-381, 1981.

8. Floris Takens. On the numerical determination of the dimension of an attractor.
Lecture Notes in Mathematics, 1125(11):99-106, 1985.

9. Andrew M. Fraser and Harry L. Swinney. Independent coordinates for strange

attractors from mutual information. Physical Review A, 33(2):1134-1140, 1986.

10. James Theiler. Quantifying Chaos: Practical Estimation of the Correlation Di-

mension. PhD thesis, California Institute of Technology, Pasadena, California,1988.

11. James Theiler. Estimating the fractal dimension of chaotic time series. The
Lincoln Laboratory Journal, 3(1):63-86, 1990.

12. James Theiler. Estimating fractal dimension. Journal of the Optical Society of
America A, 7(6):1055-1073, 1990.

13. Henry Leung and Simon Haykin. Is there a radar clutter attractor? Applied
Physics Letters, 56(6):593-595, 1990.

14. Jill I. Butterfield. Fractal interpolation of radar signatures for detecting station-

ary targets in ground clutter. 1EEE AES Systems Magazine, July 1991, pages10-14.

62



15. Alan V. Oppenheim, Gregory W. Wornell, Steven H. Isabelle, and Kevin M.

Cuomo. Signal processing in the context of chaotic signals. In Proceedings of the

I992 International Conference on Acoustics, Speech, and Signal Processing, San

Francisco, CA, March 1992, pages IV - 117-120.

16. John J. Sidorowich. Modeling of chaotic time series for prediction, interpolation,

and smoothing. In Proceedings of the I992 International Conference on Acous-

tics, Speech, and Signal Processing, San Francisco, CA, March 1992, pages IV -

121-124.

17. Simon Haykin and Henry Leung. Model reconstruction of chaotic dynamics:

First preliminary radar results. In Proceedin9 s of the 1992 International Con-

ference on Acoustics, Speech, and Signal Processing, San Francisco, CA, March

1992, pages IV- 125-128.

18. John C. Kirk, Jr. Using the fractal dimension (FD) to discriminate between

targets and clutter. In Proceedin9 s of the 1998 IEEE National Radar Conference,

Boston, MA, April 1993, pages 76-78.

19. Kevin D. Barnett and Ernest G. Baxa, Jr. A study of the correlation dimen-

sion of weather and ground clutter returns in airborne radar. In Proceedin9 s of

the American Meteorolo9 ical Society's 26th International Conference on Radar

Meteorology, Norman, OK, May 1993, pages 247-248.

20. T. T. Fujita. The downburst, microburst and macroburst. SMRP Research

Paper 210, University of Chicago, 1985.

21. Emedio M. Bracalente, W. R. Jones, and C. L. Britt. Airborne Doppler radar

detection of low altitude windshear. In Proceedin9 s of AIAA Conference on

Sensor and Measurement Techniques for Aeronautical Applications, Atlanta, GA,

September 1988.

22. Ernest G. Baxa, ,lr. Airborne pulsed Doppler radar detection of low-altitude

windshear w a signal processing problem. Digital Signal Pr°cessing' 1:186-197,

1991.

23. 3.-P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors.

Reviews of Modern Physics, 57(3, Part I):617-656, 1985.

24. Robert L. Devaney. An Introduction to Chaotic Dynamical Systems. The Ben-

jamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986.

25. Henry D. I. Arbanel. Chaotic signals and physical systems. In Proceedin9 s of

the 1992 International Conference on Acoustics, Speech, and Signal Processing,

San Francisco, CA, March 1992, pages IV - 113-116.

26. Benoit B. Mandelbrot. Fractals: Form, Chance, and Dimension. W. H. Free-

man, San Francisco, CA, 1977.

63



27. Benoit B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, San
Francisco, CA, 1983.

28. Andrew M. Fraser. Reconstructing attractors from scalar time series: A compar-

ison of singular system and redundancy criteria. Physica D, 34:391-404, 1989.

29. Robert G. Gallagher. Information Theory and Reliable Communication. John
Wiley and Sons, New York, 1968.

64







Form Approved

REPORT DOCUMENTATION PAGE OMBrvo.o7o4-o,8a

Publicreportln(_ Durden for th_ toilet%ion of _nformat_on is estrma(P_l _o average _ hour _r e_l:w3P_e,q_clu(:hnq the time for reviewing nstruchon$ sear¢_rrc_ e_,st_mg_ata _Ourc_
ga herin9 and ma_ntalnlngthe data net,deal.and completinganO review_n__hec_llect_onof fn_orm_tlOn SenO comments ¢l=_3ardingth_sburden estlmateo¢ an_ other asDeclot thl_
(olle(t_on of =ntormat on, including sugge_tlon_ for re(lu('lng th_s ourae_ 1o Washington Headauarters Services, D_rec{orate fo? !n_ormatpon Operatlon_ and ReI>L_rl_l _5 Jetter_on
Davis Highwaly,Suite 1204, ArhncJtOn,VA 22202-4302 and to the Office o4 Mana<Jement and BuDget PaDerworw.Recluc_lonPro Ect (0704-018B) Was_lnqJon DL ,'J)UJ

1. AGENCY USE ONLY (Leave blank) 2, REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1993 CgntrB_;
4. TITLE AND SUBTITLE

On the Estimation of the Correlation Dimension and Its

Application to Radar Reflector Discrimination

6. AUTHOR(S)

Kevin D. Barnett

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Radar Systems Laboratory
Clemson University

Clemson, SC 29634-0915

9. SPONSORING/MONITORINGAGENCYNAME(S)AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

;or R@pgr_
5. FUNDING NUMBERS

G NAGI-928

WU 505-64-12-02

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR-073093-3570P

RSL Technical Report 17

10. SPONSORING ! MONITORING
AGENCY REPORT NUMBER

NASA CR-4564

DOT/FAA/RD-93/41

tl. SUPPLEMENTARYNOTES

Langley Technical Monitor:
Final Report

Anne I. Mackenzie

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 33

12b. DISTRIBUTION CODE

l__s_ecau__have recognized that low order systems of nonlinear differential
equations can give rise to solutions which are neither periodic, constant, nor predictable in steady
state, but which are nonetheless bounded and deterministic. This behavior, which was first
described in the study of weather systems, has been termed "chaotic." Much study of chaotic systems
has concentrated on analysis of the systems' phase space attractors. It has been recognized that
invariant measures of the attractor possess inherent information about the system. One such
measure is the dimension of the attractors. The dimension of a chaotic attractor has been shown to
be noninteger, leading to the term "strange attractor"; the attractor is said to have a fractal structure.
The correlation dimension has become one of the most popular measures of dimension. However,
many problems have been identified in correlation dimension estimation from time sequences. The
most common methods for obtaining the correlation dimension have been least squares curves
fitting to find the slope of the correlation integral and the Takens Estimator. However, these
estimates show unacceptable sensitivity to the upper limit on the distance chosen. Here, a new
method is proposed which is shown to be rather insensitive to the upper limit and to perform in a
very stable manner, at least in the absence of noise. The correlation dimension is also shown to be
an effective discriminant in distinguishing between radar returns resulting from weather and those
from the ground. The weather returns are shown to have a correlation dimension generally between
2.0 and 3.0, while ground returns have a correlation dimension exceeding 3.0.
14. SUBJECTTERMS
weather radar, chaotic systems, strange attractor,

dimension estimation, target discrimination

correlation

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified
NSN 7540-O1-280-55OO

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

?6
16. PRICE CODE

A05

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescr_Ded by ANS_ (,tel Z]q-18
298-102




